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FOREWORD

Stability and control studies of the ground effect machine (GEM) have
in the past been hampered by the scarcity of experimental data on large-
scale machines. This is especially true in the area of dynamic stability
measuring response of the machine to control inputs and terrain discontinu-
ities.

This report of dynamic stability tests of two widely different types
of GEM's is an initial effort to obtain data with which to compare the theo-
retical predictions of vehicle response. The lack of correlation between
predicted and measured pitch and heave frequency response indicates that
some revisions of theory are necessary.

As larger and more sophisticated GEM's become available, it is the in-
tent of this Command to obtain similar data on these machines. It is be-
lieved that these data will be useful to industry in refining the methods

of predicting characteristics of GEM designs.
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PREFACE

This report presents the results of an experimental
investigation of the dynamic response characteristics of
two man-carrying ground effect machines. The project was
performed under Contract No. DA 44-177-TC-733 with the
United States Army Transportation Research Command, Fort
Eustis, Virginia. Mr. W. Hinshaw was the Army Project
Engineer and his assistance is hereby gratefully acknowledged.
The work was performed under the direction of Dr. A. A.
Perlmutter, Manager of Research Engineering of the Kellett
Aircraft Corporation, and was conducted through the period
from May 1960 through January 1961. The contributions to
the success of this program of the following Kellett
personnel is gratefully acknowledged:

Mr. J. de la Cierva, Head, Electronics Section
Mr. M. George, Test Engineer
Mr. R. DeRogatis, Test Engineer

Acknowledgement is also made to the Princeton

University Department of Aeronautical Engineering for their
cooperation during the P-GEM test program.
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SUMMARY

An experimental investigation was performed of
the dynamic response characteristics of the Princeton
20-foot annular jet Ground Effect Machine and the U. S.
Army Transportation Research Command 15-foot ''Hula-Hoop'.
The tests ranged from dynamic stability and control
responses to performance and for the P-GEM also the
operation over specially prepared test tracks simulating
various conditions of rough terrain. The P-GEM success-
fully negotiated all prepared obstacles. The calculated
values of frequency and damping ratio from existing
two-dimensional theories are found to be inadequate
for the prediction of the dynamic characteristics of
the test vehicles,




I. INTRODUCTION

In recent years a considerable pumber of investi-
gations have been performed on various aspects of the
operation of Ground Effect Machines., Particular emphasis
has been placed on the evaluation of the parameters that
affect the performance, and the stability and control
characteristics of these vehicles. Whereas analyses on
performance have resulted in significant advances, much
still remains to be done in the areas of stability and
control. The present project was undertaken to shed
further light on the handling qualities of GEMs and for
this purpose two man-carrying machines were instrumented
and their response characteristics were racerded. .The
test vehicles were the 20-foot annular GEM built by the
Princeton University for the U. S. Army Transportation
Corps, shown in Figure 1, and the Hula-Hoop shown in
Figure 2., The '""Hula-Hoop' consists of an experimental
de Lackner Aerocycle modified by the U. S. Army TRECOM
by the addition of a circular duct or hoop around the two
co-axial rotors and a reversible pitch thrust fan in the
longitudinal direction.

Section II of this report is a discussion of the
test results, Section III correlates these data with the
available theoretical analyses. Conclusions and recommend-
ations are presented in Section IV, The physical parameters
of the test vehicles, the test instrumentation and a summary
of the test program are presented in Appendices A, B, and C,
respectively.

A sixteen-mm color film supplements the data
presented in this report, This film is available on loan
from U, S. Army TRECOM, Fort Eustis, Virginia,




II. DISCUSSION OF THE TEST RESULTS

The test results of each of the two test vehicles
are discussed separately. The first series of tests were
performed with the 20-foot annular jet Princeton GEM.

The tests with this vehicle were divided into four major
categories:

a, Dynamic Stability

b. Response to Control Inputs
c. Performance

d. Rough Terrain

The tests performed with the ''Hula-Hoop' were
concerned mostly with the first two of the above test
categories,

1. - Princeton GEM Tests

1.1 Dynamic Stability

Tests were performed to determine the
transient response of the vehicle to different types of
pulse disturbances. In the zero velocity tests the
disturbance was obtained by a manual push-down of the
vehicle by one of the test engineers. In the forward
speed tests the disturbances were obtained by:

a.) Stick pulse
b.) Single ditch or hole

Figures 3 and 4 show the response to a
longitudinal disturbance at zero forward speed. It is
seen from Figure 3 that, at low altitude, the machine is
quite stable. The normal acceleration response consists
of a rapidly decaying oscillation with a frequency of
about 1.0 cycle/second. In the figures linear acceleration
* is defined as positive when upward, forward, or starboard
along the centroidal principal axes, respectively. The
pitch response appears to be a nonperiodic decaying
- motion. At a higher altitude, Figure 4, the frequency of
the normal acceleration is again about 1 cycle/second, and
the vehicle assumed a new pitch attitude, while starting to
move forward. Roll disturbances at zero forward speed,
presented in Figures 5 and 6, show a similar behavior as
the pitch disturbances. At low height the attitude response
is stable and the machine returns to its previous equili-
brium position. At higher altitudes the machine attains a
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new attitude equilibrium position in the direction in which
it was disturbed, and transverse motion ensues.

These zero speed tests seem to indicate that
there does not exist strong coupling between normal
acceleration and attitude, the former being stable at all
altitudes, the latter being dynamically unstable at the
higher test altitudes. Figure 5 and 6 also show the trace
of the vehicle altitude. It is noted that these traces
indicate a height variation that is, in general, compatible
with the vehicle attitude response. The effect of an
increase in moment of inertia is shown in Figure 7. An
additional weight of 114 1lbs. was placed at two locations
on the longitudinal axis, thereby increasing [ from
1540 to 1730 slug-ft.2. The pitch recponse for this test
showed an oscillatory tendency with a frequency of about
0.25 cycle/second.

Forward speed test data are presented in
Figures 8 through 10. Figure 8 is the response of the
vehicle passing at 9 feet/second over a single hole of
2-foot depth and 4-fcot width. Figures 9 and 10 are
longitudinal stick pulse responses at 15 and 22 feet/second,
respectively. The test records indicate that the pitch
attitude does not return to its predisturbance equilibrium
position. On the other hand, the motion is not unstable
in the sense that its magnitude continuously increases with
time. It is also interesting to note that the pitch
motion exhibits more waviness than in the hovering tests.
In the visual film records of these tests the change of
trim attitude is barely perceptible and the responses to
the disturbances appear to decay rapidiy. From the above,
as well as from other tests made, it is shown that the
heaving motion is oscillatory with a frequency of about 1
cycle/second for all test speeds. The pitch motion is
aperiodic at zero speed and has what may be a nonlinear
oscillatory shape of about 0.25-.40 cycle/second for the
forward speed tests.

1.2 Control Response

Figure 11 shows the response of the P-GEM
to a forward stick step at zerc fcrward speed. This test
was performed with the pusher propeller inoperative. A
maximum longitudinal acceleration of 0.04 g was obtained.
This is 507% larger than would be expected, considering the
tilt angle of the machine. A speed of 12 feet/second
was obtained in 10 seconds. The pitch angle change was
limited to abcut one degree.
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Figure 12 is a similar control step to
the right. Initial roll velocity was about 2 degrees per
second. The velocity instrumentation was inoperative during
this test, but it is estimated that a sideward velocity
of 10 feet/second was obtained after 10 seconds. Another
control response is shown in Figure 13, where the machine
is brought to a stop from a forward speed of 16.5 feet/
second. The above responses represent the controllability
of the P-GEM as resulting from vehicle tilting. Yaw control
responses are shown in Figures l4, 15 and 16 for forward
velocities of 0, 13 and 20 feet/second, respectively. Yaw
control is obtained by locating a rudder surface in the
airflow of the pusher propeller. As a result there exists
a strong coupling between yaw, pitch and forward motion.

The effect of the pusher propeller is seen in Figures 15
and 16 where there is a rapid increase in yaw attitude
when the thrust engine power is increased. The rate of
yaw is highest for the zero trim speed test, with a
maximum value of 30 degrees/second. This value is reduced
to about 10 degrees per second for the forward speed tests.

1.3 Performance

The variation of brake horsepower with
hover altitude is shown in Figure 17. In the range of
altitudes tested the power increase is nearly linear with
altitude,.

The variation of operating altitude with
forward speed at constant power of about 160 HP is presented
in Figure 18. The average loss of altitude with increasing
forward speed is seen to be about 2 inches for every 10
feet/second. -

A maximum forward speed of about 50
feet/second (34 m.p.h.) was attained. During that parti-
cular test the machine experienced a sharp pitch-up
exceeding 15 degrees.

The P-GEM was operated up and down
5-degree inclines, and exhibited adequate control capa-
bility during these tests.

No accurate measurements were obtained
for the radius of turn for different forward speeds.
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1.4 Rough Terrain

Test runs were made over individual holes
and ditches of various widths and depths, series of ditches,
individual fences, plowed fields, and general cross-country
conditions. It was determined that individual holes with a
planform area to vehicle base area ratio of less than 0.05
had only a negligible effect on the motion of the vehicle
passing over the holes. The response of the machine traver-
sing individual ditches, however, was quite pronounced.
Figure 19 presents the response of the P-GEM crossing a
single ditch 4-foot wide x 2-foot deep at a speed of 8
feet/second. Figure 20 presents a similar crossing over a
4-foot wide x 4-foot deep ditch. During the crossing of
the deeper ditch, the machine front and rear ends collided
with the ground, resulting in 0.1 g values of rearward
acceleration. The pitch attitude changes were also more
severe for the deeper ditch., The effect of forward speed
on the ditch crossing characteristics of the P-GEM are
obtained by comparing Figure 20 with Figures 21 and 22,

It is noted that, whereas the peak magnitude of the normal
acceleration tends to increase with forward speed, the
opposite occurs insofar as the peak magnitudes of the pitch
attitude is concerned. The longitudinal accelerations are
indicative of ground impacts. The effect of ditch width is
demonstrated by comparing Figures 19 and 23. The normal
acceleration peaks are considerably smaller for the narrower
ditch shown in Figure 23, The altitude traces for these
tests provide qualitative information only, insofar as vehicle
height from average ground level is concerned. The altimeter
utilized two conductive surfaces, attached to the vehicle
base, which together with the ground completed a variable
capacitive circuit., The altitude traces indicate the
relative distance between these surfaces and the obstacle,
such as the bottom of a ditch or the top of a fence, rather
than the relative distance of the vehicle base from the
%round surrounding these obstacles. The peaks in Figures

0 and 22 are representative cf the ditch depths, and not
of vehicle altitude. It should be noted, however, that
over flat terrain the altitute indicated corresponds to

the distance between the center of the vehicle's base and
the ground.

The effects of fence height and forward
speeds are shown in Figures 24 through 27, As expected,
increased speed and fence height results in increased magni-
tudes of normal acceleration peaks and pitch attitude dis-
placements, Similar effects are demonstrated in Figures 28
through 31 for 24-inch-wide fences. The longitudinal
acceleration peaks correspond to ground impacts.
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The responses of the P-GEM passing at
three different speeds over a series of tem 2-foot wide
x l-foot deep ditches are shown in Figures 32, 33 and 34.
At the low speed run, Figure 32, the heave response
frequency is identical to the disturbance frequency.

As speed increases, however, the machine tends to
oscillate at its natural frequency in heave which is
about 1 cycle/second. The pitch response was of
insignificant magnitude for all speeds.

The results of similar tests over a
series of 4-foot wide x 2-foot deep ditches are shown in
Figures 35, 36 and 37. At low speed, Figure 35, there
occurred significant pitch attitude changes with a
frequency close to that of the disturbance frequency.
The increasing of the forward speed resulted in a decrease
of the pitch response in both magnitude and frequency.
The pitch attitude frequency during these higher speed
runs was about 2/3 of a cycle/second. Maximum normal
acceleration peaks of .27 g were recorded and the
altitude peak changes were about equal in magnitude to
the operating height of 10 inches.

The test vehicle was operated over
plowed fields with various directions of incidence relative
to the furrows, and no significant effects on the motion
of the machine were detected.

Operation over ground with different
grass heights did not affect the hover altitude at constant
engine r.p.m.

Similarly, the operation of the machine
over and along steps and up and down moderate slopes did
not pose any difficulties,

In summary, the P-GEM was capable of
passing over all prepared obstacles. The most severe
conditions were encountered when the disturbance frequency,
as for example caused by a series of ditches, approached
the natural heaving frequency of the vehicle (about 1
cycle/second). The ditches were at 10-foot intervals, and
hence the ''critical speed' over the ditches was about 10
feet/second.

2. The '"Hula-Hoop' Tests

The tests with the '"'Hula-Hoop' covered cie
areas of dynamic stability, responses to control inputs,
and hovering performance. A typical zero speed response




to an external longitudinal push-down is presented in
Figure 38. The response to longitudinal 'stick ‘pulses at
low forward speed is shown in Figure 39, The pitch
attitude motion for these tests were oscillatory at a
frequency of about .2 cycle/second. Two other zero speed
records, not presented here, show an aperiodic pitch attitude
response, and, hence, caution should be exercised in the
interpretation of these pitch data. On the other hand,
the nearly neutrally stable heave oscillation is a
characteristic feature of this test vehicle. Figure 40
more clearly illustrates this heave response to a
vertical disturbance. The heave frequency is about 0.45
cycle/second., Figure 41 presents the response to a yaw
disturbance. The '"'Hula-Hoop'' at zero speed is seen to be
neutrally stable in yaw and possesses zero yaw damping.
The response to longitudinal control inputs is shown in
Figure 42, Maximum rates of pitch of 3.5 degrees per
second were attained. Similar responses in roll and yaw
are shown in Figures 43a and 43b, respectively. Maximum
rates achieved were 2 degrees/second in roll and 12.5
degrees/second in yaw. The maximum control moments measured
were 55 foot-pounds in roll and 155 foot-pounds in pitch.

Two types of hovering performance tests were
performed. In the first series of tests, the changes in
altitude were obtained at W = 834 pounds and varying rpm,
and the results are presented in Appendix C, Section II-C.
The second series of tests consisted of the variation of
gross weight at constant rpm, and the resulting equilibrium
altitudes are shown in Figure 44,




III. CORRELATION WITH THEORY

1. Current Theories

Existing theories are mostly concerned with the static
performance of ground effect vehicles, and specifically
with the prediction of the vehicle base pressure as a
function of operating altitude. These theories range from
a simple momentum relation, Reference 1, to a more exact
momentum theory in Reference 2, and to a potential flow
solutions of a bifurcated jet with given upstream conditions,
Reference 3. These analyses were for the two-dimensional
symmetric case. In the analysis of the non symmetric case,
corresponding, say, to a change in attitude, the available
theories generally assume that the pressure varies linearly
across the base from jet to jet with the base pressures near
each jet evaluated by the two-dimensional symmetric theory.
The symmetric theories all have one thing in common, namely,
they postulate that the pressure across the base is constant
for any given operating condition. Several controlled model
tests, however, have shown that the pressure varies across
the base. Both References 4 and 5 show that there exist
pressure reductions on the base plate in the vicinity of
the jet nozzles. This nonuniformity is generally ascribed
to the existence of a ''vortex''-type flow of the air trapped
under the base plate., It is believed that the effect of
these nonuniformities of base pressure on the stability
characteristics is of significance, and warrants further
investigation.

Work on dynamics of GEMs is reported in References 6
through 9. References 6, 8 and 9 formulate theories that
are based on the concept of the unbalanced jet. This
concept is concerned with the capability of jets to adjust
to varying boundary r .aditions. For example, a jet curving
from the nozzle to a path tangent with the ground surface

. does so under the influence of the pressure difference
across the jet, If the nozzle height is increased, and
assuming the pressure difference tc remain constant, the
jet will be parallel with the ground at a distance above
the ground plane. There results an outflow of air from the
cushion, which tends to reduce the base pressure, and hence
the vehicle will experience a downward or stabilizing
acceleration. As the vehicle height increases, however,
the density cf the trapped air decreases and sc does the
pressure. This reduction in pressure causes the jets to
assume a new flow path which, depending on the relative
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strength of these two effects, can result in the cushion
air mass to be augmented, reduced or remain constant. The
application of this analysis to the coupled heave and pitch
motion as reported in Reference 8 results in a conclusion
that uncompartmented, annular jets are never stable. This
is, obviously, at variance with experience for low values
of h/d. Furthermore, at the higher values of h/d, an
incremental change in attitude angle will only insignificantly
affect the equilibrium heights of the nozzles and hence is
not expected to affect appreciably the jet flow boundary
conditions. It is therefore believed that both the volume
effect and the jet unbalance effect decrease in importance
at the higher values of h/d. Yet, at these values the
annular jet vehicles erperience a strong static and dynamic
instability. This leads toward the conclusion that a
dynamic analysis of annular jets should include other, more
influential phenomena, as, for instance, the base pressure
variation as influenced by air flow inside the pressurized
cushion. An analysis along these lines has been reported in
Reference 9. That investigation considers the flow pattern
* under the base plate to be of a vortex type. The result of
that study does not agree with the test data of Reference 5.
One of the reasons for this disagreement is believed to be
connected with the assumption of vortex flow. It is much
more plausible, as also recognized in Reference 9, that the
flow is rotational, and any future analysis of such rotat-
ional flow is believed to be worthwhile. To summarize,

the existing theories result in the following conclusions:

a.) For the balanced case from References 6, or 8, the
uncoupled heave mode is neutrally stable and is dscillatory

with a frequency, @) - /Jfl- radians/second (1)

e

The uncoupled pitch mode is an unstable oscillation with a

frequency, &, = %gﬁ%r radians/second (2)

b.) For the unbalanced case, from Reference 8, the
uncoupled heave mode has a frequency,

D \/gj___ 2° /52-//:-' ) (3)
where ! é *4 25 B

5~ Al (4)

T A )'/2 ]
Q P ‘_2 fé_ . Pr/ (5)

T F 2p | I+1-2) s 2 (A )%

’Off' 4 A ]
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with a damping ratio,
s-7

< I
Calculations show that the unbalanced jet values are
essentially identical to the balanced values for the
frequencies and damping ratios. A ccmparison of the thus
calculated values of &y and¢j with the experimental

values is presented in Figure 45, It is seen that the
experimental data show that the heave frequency is only
insignificantly affected by altitude and speed. Whereas

the theory predicts the heave oscillation to be undamped,
the previously discussed test records show significant
damping at all test altitudes. Also, the theory predicts
the pitch motion to be oscillatory and with a higher
frequency than that of the heave motion, whereas no concrete
evidence of this was found from the test data.

The theory presented in Reference 9 is an extension of
that of Reference 8 to the three-dimensional case. The
basic shortcomings of the theory of Reference 8, therefore,
also exist with that of Reference 9. In addition, the
three-dimensional theory presented in Reference 9 requires
a very complex calculation procedure and as such is not
very suitable for the evaluation of the effects on stability
of the various design parameters.

No stability theories are in existence for vehicles of
the type of the "Hula-Hoop'. The experimental heave fre~
quency lies between 4-add_5 radians/second, as is also shown
on Figure 45.

2. The Effect of Air Cushion Flow

As mentioned in previous paragraphs, it is believed that
the air flow under the vehicle base significantly affects
both the performance and the stability of annular jet GEMs.
It has further been indicated that this flow is rotational,
as opposed to the vortex type, i.e., the velocity decreases
as the flow core is approached.

A rigorous rotational analysis of the flow beneath the
base, even for the symmetric condition, is not an easy task,
In what follows, an attempt has been made to investigate
this rotational flow with a semi-empirical method. The
resulting analysis, though not being rigorous from an
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analytical point of view, determines some qualitative effects
on performance and stability of the air cushion rotational
flow.

For the symmetric condition, the flow is considered to
follow stream paths as shown on Figure 46, FEigure 46 also
presents the notation to be used in the analysis.

The following assumptions are made:

1. There exists a stagnation point, O, located a
distance h/2 below the base and a distance, 7 ,

along the base from the inboard nozzle edge.

2, Along any line OB, the velocity is parallel to the
baseplate and has a magnitude that increases
linearly with the distance from point O.

3. The mass flow per unit time crossing any radial
line from point 0, is constant with position angle,
9.

4, Incompressible flow equations are applicable.

5. The pressure at point A is given from the
rotational flow equation,

2
L=4rPN
6. The pressure at a point on the base very far from
point A is equal to the base pressure,/a .

as calculated from theories that do not account for
+v . rotational cushion flow.

With the above assumptions and the notation shown on
Figure 46, the analysis proceeds as follows:

The velocity at a distance /; from O along 0A, 1is

v, = Gnx (7)

In particular,

W= 6r%) ®)

2




The velocity at a distance /; from 0 along OB, is

given by -
-ty - [l )R
Vrd_,a%—/?djaeo- (9)
From the geometry of Figure 46,
X =R smb . (10)
Differentiating (10) with respect to time,
)Z=/P,,5/m94+966;c0595 ] (11)
Also,
b )2 2
2_ /2
x—/z)v*/@ : (12)
It follows that '
> _ X
Substituting Equation (13) into Equation (11) and
solving for X,
: /?/ :
The mass per unit time crossing the line OB is
0/7?7 0 . /= Raz/'ee/.
(G8h = [Fr&ds = p2(75)% . s)

Similarily the mass per unit time crossing the line
OA is

A 2
(%) = P8 0
13




Equating Equations (15) and (16), solving for é% ,
and substituting this into Equation (14)

i-lte) 46 - (z)y. an

The pressure at the point B is given by Bernoulli's
equation, and utilizing Equations (12) and (17)

foa=/°,—%/0léz.
_ _ 2yt 1
o= "z, [7*/22)2] - (18)

For large values ofAZL~, has been assumed to
/2 1%

equal . It follows thatp = . Also the pressure
/ A5

2
at point‘A,/b , equals the dynamic pressure fLF’K/ .
A

It follows that
/ X R
p-p [Fl2
o /o1 (2) (19)

As seen from Figure 46 the distance of any point, B,
for the edge of the jet is given by

Y =x+7 (20)
Introducing Equation (20) into Equation (19)

(2]

2z

L= T - (21)
to /s 3%

The variation of the pressure ratio}C) with e
4
for several values of h/d is shown in Figure 47. A number
of test points from Reference 5 are also presented. The
distance between the nozzle inner edge and the pressure
loss peak, 77 , varies with h/d. For very low values of h/d,
this distance is approximately equal to h/2. As the
ratio h/d is increased, the test data of Reference 5 show that
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the value of 77 is continuously reduced fromh/2 . This

relative reduction may be associated with the flow
curvature of the jet. In the theoretical curves on

Figure 47, the experimental values of » have been utilized.
The theory is seen to agree reasonably well with the
experimental data. It is noted that for low values of

h/d, the local base pressure, f’ , becomes the no-flow

base pressure, £ before the vehicle centerline is
é
reached. This is not so for the higher values of h/d.

This pressure distribution implies that the average base
pressure is less than £ - The reduction can be evaluated
b

by integrating Equation (21) with —%; from 0 to 1. It
follows that

p=pli- ;‘1 '//_ // + lan %)] " (22)

VG

For the range of h/d under consideration, Equation (22) can
be closely approximated by

.= % (1~ %)
=7O// l/c/ : (23)

Equation (23) implies that as a result of the rotational
flow there exists a theoretical 1lift loss equal in percent to
one hundred times the value of ratio h/d. Equation (23) also
implies that for any fixed geometry parameter 47{/ , the loss

decreases with increasingé4g. This is in agreement with
the experimental data of Reference 10.

The above analysis is limited to the symmetric two-dimen-
sional problem of annular jet performance. For this type of
analysis to apply also for stability predictions, the method
must be extended to the nonsymmetric case. Thus, the data of
actual flow experiments should be taken into account insofar
as the behavior of the rotational flow cores is concerned.
Reference 5 indicates, for example, that an inclination of
the vehicle base results in a detachment of the core from
the base at the higher edge, whereas the core under the
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lower edge of the base assumes an elliptical shape. These
phenomena together with Equation (21) can be used to

explain qualitatively the different stability characteristics
of annular jets at low values of h/d as compared to the
higher values of this parameter.

It is noted that Equation (16) c-nsists of two factors.
The first factor is the pressure,f% , as obtained from the

standard theories. This pressure is known to possess a
large, stable slope, gz% » at low values of h/d. This

stable slope reduces with increasing h/d. The second factor
of Equation (21) has been shown to result in only narrow
pressure loss regions for low values of h/d. The pressure
loss region, however, is also seen from Figure 47, to increase
with increasing values of h/d. Furthermore, the previously
mentioned phenomena of detachment and flattening of the cores
of the rotational flow at the high and low base ends, respect-
ively, results in an unstable pressure variation, which
increases in severity with increasing h/d. The base pressure
distribution is seen, therefore, to be made up of one factor
that is stable, but of decreasing importance as h/d increases,
a7d another unstable factor that increases in importance with
h/d.

The above qualitative analysis appears to explain the
pitch stability characteristics of annular GEMs and hence,
provides a promising avenue for further investigations.
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IV, CONCLUSIONS AND RECOMMENDATIONS

Instrumented dynamic response tests were performed
with two types of ground effect machines., The Princeton
20-foot GEM was also tested over specially prepared test
tracks in order to simulate various conditions of rough
terrain. It was found that the P-GEM was capable of
successfully negotiating all prepared obstacles, thus
emphasizing the potential of this type of vehicle for Army
all-purpose-ground-proximity vehicles. The test data
presented in this report can be utilized for correlation
with analysis. Existing analyses, however, are found to
be inadequate for such correlation. It is recommended that
tests, similar to those performed in this program, be made
also with other ground effect machines to form a reservoir
of full scale test data for correlation with theories that
eventually will be formulated. It is also recommended that
increased effort be devoted to the formulation of a dynamic
stability theory which will lead to a better understanding
of the effects of the various design parameters on the
handling qualities of ground effect machines.
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APPENDIX A
TEST VEHICLES

Two vehicles were used in conjunction with this test
program,

1. The Princeton University 20-foot diameter peripheral
jet ground effect machine, shown in Figure 1,

2. The '"Hula-Hoop', Figure 2, a DelLackner Aerocycle

modified by the U. S. Army Transportation Research Command
and Kellett Aircraft Corporation.

The following are the pertinent characteristics of the

Princeton GEM with additional information on this vehicle
to be found in References 11 and 12:

Empty Weight 1380 1b..
(Including 105 1lb.. instrumentation)

Gross Weight 1680 1b..
Mass Moments of Inertia at Gross Weight:
Roll /.. = 737 slug-ft.?
Pitch /[,, = 1540 slug-ft.2
Yaw [, = 1542 slug-ft.2
Centroids:

X = 0.3 in, fwd. of ¢ propeller
-y = 0,7 in., to right ofg propeller (view looking

down)
Z = 18.1 in. above base of vehicle
Geometry:
Planform Circular
Diameter (over-all) 20 ft.
Diameter (base) 18 ft. 2 in.
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Nozzle Inclination 45 degrees

Nozzle Area 19.3 ft.2

Inlet Ring 19.0 ft.2

Percent of Total Nozzle Area Utilized for Control:

Longitudinal 24,47,

Lateral 31.47%

Main Propeller Diameter 4,75 ft.

(4 Rigid Blades)

Rear Engine Propeller 3.50 ft.

Diameter (2. Rigid Blades)

Rudder Area 10.1 ft.2
Engine HP:

Main Engine (Lycoming Model No. VO 360-AA)
Maximum HP at 2900 RPM 180
Operating HP at 2700 RPM 132
Rear Engine (Nelson Model No. H63C)
Maximum HP at 3500 RPM (approx.) 30
Hours Flown in conjunction with this program,
12.5 hours

The Hula Hoop, as previously mentioned, is a DeLackner
Aerocycle modified by the U. S. Army TRECOM. To the
original Aerocycle TRECOM added a 15 ft. diameter duct
with a flexible section at the bottom, and a variable
pitch thrust rotor driven by the main engine and controlled
with longitudinal stick motion.

Kellett Aircraft Corporation improved the ''Hula-Hoop"
yaw controls by adding 8 ducts along the skirt, &4 in each
direction. These ducts turned the air flow from an axial
to a tangential direction and utilizing the momentum of the
air provided a control yawing moment on the vehicle. The
rudder pedal travel closed micro switches which in turn
activated solenoids that opened or closed these ducts.,
Photographs of this installation are shown in Figure 48.
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A roll control system was also installed on the
Hula-Hoop by Kellett Aircraft Corporation. Four vanes
were added, 2 on either side, which, utilizing the drag
forces induced by the air flow, provided the necessary
control forces and moments. A photograph showing the-
installation for one set of these vanes is presented in
Figure 49,

A summary of the Hula Hoop parameters are as foldéws:

Empty Weight 640 1b. .
(including 26.4 1b,. instrumentation)

Gross Weight 834 1b. .
(including pilot, fuel, ballast)

Mass Moments of Inertia at Gross Weight:
Roll /,, = 194 slug-ft.2
Pitch /= 236 slug-ft.2
Yaw /,, = 376 slug-ft:.2
Centroids:
X and j} on g, of shaft
7. Z= 2,10 ft. above bottom of landing skids

Geometry:

Main Rotor (Two 2 Bladed counter rotating rotors)

Diameter 15.0 ft.
Hub Diameter 1.08 ft.
Chord (average) 0.50 ft.

o ‘ .085

Blade Pitch Settings at 0.75 Radius
Upper 8.67°

Lower 12.33°

Gear Ratio Rotor to Engine 10.3 : 1
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Thrust Rotor (2 Blades)

Diameter 4,25 ft.
Hub Diameter .79 ft.
o .0885

Total collective Pitch Travel 9.58° Forward, 12.5°
Aft, Figure 50 is a plot of percent of longitudinal stick
travel vs. collective pitch of thrust rotor. Distances
from the ¢ propeller to the C.G., are X¢: = ~1,87 ft,
Z, = 3.0 ft. Gear Ratio of rotor to engine is 1 . 2.5,
Hoop
Inside Diameter 15.1 f¢t,

Hoop Length 2.5 ft.
(including flexible skirt)

Hoop Thickness .34 fe,

Roll Vanes, Total of 4, 2 on each side

Chord .75 ft.
Span DinZ Ol
Total Area 15.8 ft.2

Vane total travel, 0°, to 45° with the vertical.
Figure 51 shows the relationship between lateral stick
travel and roll vane angle.

Distance from vane centers to
C.G. 5, = 6.15 ft,

ZV = 1,58 fit.e

Yaw Ducts
Total of 8, 4 in each direction
Total exit area in one direction .805 ft.2

Distance from C.G. tog Ducts, 8.177 ft,
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Engine
Modified Mercury Outboard Engine

Rated at 40 HP at 5500 RPM
42 HP at 5800 RPM

Hours flown in the premodified and modified state

5 hours.
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APPENDIX B

INSTRUMENTATION

Provisions were made for oscillographic recording of
time histories for the following flight data:

Item Measurement
1 Longitudinal stick position
2 Lateral stick position
3 Rudder position (P-GEM only)
4 Fuselage pitch attitude
5 Fuselage r'oll attitude
6 Fuselage yaw attitude
7 Normal acceleration at center of gravity
8 Longitudinal acceleration at center of gravity
9 Lateral acceleration at center of gravity
10 Vehicle altitude (P-GEM only)
11 Vehigle position with respect to obstacles (P-GEM
only
12 Yaw duct vane position (Hula-Hoop only)

The above measurements were obtained by using analog
type transducers which are described below. The signals
were fed into two six channel bridge balance and calibrating
units, and subsequently recorded on a twelve channel
recording oscillograph, Consolidated Electrodynamics
Model CEC-5118, all shown in Figure 52,

A strain gage type transducer was used to obtain
position measurements (Items 1, 2, 3). This consisted of
a double cantilever strain gaged beam assembly operated by
a cam, and linked to the control system of the machine. In
the P-GEM, because the controls consisted of a pulley and
cable system, the stick position indicated represents a
trend and cannot be used as an obsolute value. The control
system of the "Hula Hoop'', however, consisted of a rigid
linkage, so that any position indicated can be accepted as
a true position within an accuracy of 27 of total travel.

Three Statham linear accelerometers Model D-2-275,
were used to determine all linear accelerations (Items
7, 8, 9). The accelerometers were calibrated to + 1lg
with a repeatibility of 967. In addition, they were
also checked, by using a turntable, in the g ranges
which were comparable to the actual g's experienced in
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this test program. The ccrrelation between predicted and
indicated g's, at the range of .10 g was within 98%.

Pitch and roll were measured with a Gilannini vertical
gyro Model 3111G-1, wired in free gyro configuration. Yaw
was measured with a Giannini directicnal gyroModel 3211G-1.
Figure 53 is a photograph showing the gyrcs mounted on the
Princeton GEM. The vertical gyro sensitivity was increased,
so that full trace deflection occured at + 17°, a value
50% greater than the maximum angles expected from the vehicles
being tested, In calibrating, it was discovered that the
gyro had an excessive drift rate, particularly in the roll
axis, where the average drift rate measured was 1.25°/min.
From calibrations, it was also determined that the indicated
readings were accurate to within + 1/4 of one degree.

The directional gvro has an electrical signal output
for angles to + 90°, The values obtained were within + 1°,
The gyro was linear up to an angle of 6C°, and beyond
this point its output was non-linear, Any readings beyond
60° were corrected for this non-linearity.

The vehicle position with respect to the obstacles
was determined by using a resistive network designed to
adapt the change in ground resistance to the galvanometer
sensitivity. The change in resistance was accomplished by
placing a steel wire a few inches over the grcund just
before each obstacle. Twe conductive prcobes extending from
the front of the vehicle completed the circuit and fed the
signal into the recorder. By placing wires at fixed inter-
vals along a ctrack, the above principle was also used to
determine vehiclie average velocity., Figure 54 is a
schematic diagram of the instrument,

It should be noted that the cunductive probes had to
be leong encugh, so that they wouid make contact with the
stainless steel wire, regardiess of the vehicle's attitude
or height., As a resuir, the positinn of the vehicle
relative to the obstacles can cnly be determined within
+ 1 ft. Consequently, the velocities iIndicated would also
be subject teo this errar. Therefore, the average velocity
over any two wires 25 ft. apart would be accurate to
withirn 47%.

The yaw duct vane position was determined by utilizing
the change in current drawn by the vare activating solenoids.
A fraction of the current operating each set Sf ducts was
fed into the galwvsc by mears nf a shunt, and recorded
in two differert chamnels of the recorder to identify control
direction.
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The measurement of altitude was accomplished by using
a capacitive altimeter. The instrument £Zonsisted of a Hall
bridge circuit operated near its balance point. The readings
of the altimeter were not linear due to the non-linearity
of the change in reactance of the sensor with the altitude,
and also due to the non-linear output of the unbalanced
bridge. The altitude indication, however, was useful if
considered from a qualitative point of view. Figure 55
shows the altimeter circuit housed in the control panel,
and its installation on the Princeton GEM,

An umbilical instrumentation system was used with the
Hula-Hoop, due to weight problems. The recorder, bridge
balance boxes, and power source were mounted externally
utilizing a 180 foot multiple cable to transmit the si%nals
from the sensors to the recorder, as shown in Figure 56.

Shunt type resistance calibrations were taken for
each channel during initial calibration, also before and
after each flight to standardize results. 1In addition,
total stick travel was recorded before and after flights,
during ground check of instrumentation, to estgblish
reference points.
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APPENDIX C

TEST PROGRAM SUMMARY

The performance and handling qualities of the P-GEM
were adequate for the performing of an extensive test
program, including dynamic stability, control response
tests, performance and operation over rough terrain.

A similar test program was performed with the ''Hula-Hoop',
except that, because of the limited performance and
controllability of this machine and the resulting safety
considerations, the rough terrain tests were excluded.

]

In the following a list is presented of the tests
performed with the two vehicles, as well as a brief
description of the obstacles negotiated by the P-GEM.

A schematic of the test tracks utilized in the testing of
the P-GEM is presented in Figures 57a:and 57b.

It stould be noted that most of the tests described
below were repeated at least twice to insure repeatdbility
of data obtained.

I. Tests Performed With the Princeton GEM

A. Dynamic Stability

1.0 Hover with fixed stick

1.01 Manual rolling moment input from left side.
h = 6 in. 2050 RPM, W = 1680 1b,.

1.02 Manual pitching moment input from the front.
h = 6 in. 2050 RPM, W = 1680 1b. .

1.03 Manual pitching moment input from the front.
h = 6 in. 2500 RPM, W = 1795 1b. .

1.04 Manual pitching moment input from the front.
h = 8,5 in. 2800 RPM, W = 1795 1b. .

1.05 Manual rolling moment input from left side
h = 12 in, 2700 RPM, W = 1680 1b. .

1.06 Manual pitching moment input from the front
h = 12 in., 2700 RPM, W = 1680 1b..
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2.0

2.01
2.02

Forward Speed at 2700 RPM
h =12 in, W = 1680 1b..

Stick pulse aft at 10 mph
Stick pulse aft at 20 mph

Response to Control Inputs, W = 1680 1lb..

1.0

1.01
1.02
1.03
2.0

2.01
2,02
2,03
2.04

Hover with fixed stick at 2700 RPM.
h = 12 in.

Stick step forward until Vivo = 10 mph
Stick step right until V., = 10 mph
Full left rudder with rear engine at 3500 RPM

Forward speed at 2700 RPM
h = 12 in.

Stick step aft from 10 mph to 0 mph
Stick step aft from 20 mph to O mph
Full left rudder from 10 mph
Full left rudder from 20 mph

Performance ( W = 1680 1b . except as noted)

1.0

1.10

1.11
1.12
1.13
1.14
1.20

.21
1,22

Control stick moments at 2700 RPM
h =12 in,

Longitudinal stick motion to balance moment
g?g'to weight added on front 7.63 ft. from
We=0 1b..

We = 19.56 1b..

We= 37.44 1b..

W.= 17.44 1b..

Lateral stick motion to balance moment due
to weight added on left side 9 ft. from C.G.

W,= 0 1lb..
W = 10 1lb..
29




1.23
1.24
2.0

2.01
2.02
2.03
2.05
2.06
2.07
3.0

3.01
3.02
3.03
4.0

4.01

4,02

W= 2
W= 4

4,56 1lb.,.
7.44 1b,.

Altitude vs. engine RPM in hovering

RPM =
RPM =
RPM =
RPM =
RPM =
RPM =

Altit
W=1

Slow

2050 h = 6.5 in, W = 1680 1b.
2500 h = 9.5 in. W = 1680 1lb.
2900 h = 14,5 in. W = 1680 1b.
2050 h . 6.0 in, W = 1795 1b.
2500 h

2900 h

8.0 in. W = 1795 1b.

13.5 in. W = 1795 1b.

ude vs. forward speed at 2900 RPM
680 1b..

speed approximately 8 MPH

Medium speed approximately 15 MPH

High

speed approximately 30 MPH

Maximum Acceleration

Main
3500

Main
3500

engine RPM 2500 thrust engine RPM
stick step forward

engine RPM 2900 thrust engine RPM
stick step forward

Rough Terrain

1.0 A series of 10 ditches 8 fet. apart 2 ft.

wide
Figur

1 ft. deep x 30 ft, long shown in
e 58

1.01 Low forward speed 2700 RPM fixed stick

1.02 Medium forward speed 2700 RPM fixed stick

1.03 High forward speed 2700 RPM fixed stick

2.0 A series of 10 ditches 10 ft. apart 4 ft.

wide
Figur

x 2 ft. deep 30 ft. long shown in
e 59
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2.1
2.2
2,3
3.0

3.01
3.02
4,0

4,01
4.02
5.0

5.01
5.02
5.03
6.0

6.01
6.02
7.0

7.01
7.02
8.0

8.01
8.02

Low forward speed 2900 RPM fixed stick
Medium forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Individual ditch 2 ft. wide x 2 ft. deep x
30 ft. long

Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Individual ditch 4 ft., wide x 2 ft. deep x
30 ft. long

Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Individual ditch 4 ft. wide x 4 ft. deep
x 30 ft. long as shown in Figure 60

Low forward speed 2900 RPM fixed stick
Medium forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick
Individual hole 4 ft. x 4 ft. x 2 ft. deep
Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Individual hole 4 ft. x 4 ft. x 4 £ft. deep
as shown in Figure 61

Low speed 2900 RPM fixed stick
High speed 2900 RPM fixed stick

Single fence 3 in. thick x 6 in. high x
30 ft. long

Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick
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9.0

9.01
9.02
16.0

10.01
10.02
11.0

11.01
11.02
12.0

12.01
13.0

13.01
13.02

14.0
14.01
14,02

Single fence 3 in. thick x 6 in. high x
30 ft. long

Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Single fence 24 in. thick x 6 in., high x
30 ft. long

Low forward speed 2900 RPM fixed stick
High forward speed 2900 RPM fixed stick

Single fence 24 in. thick x 12 in. high x
30 ft. long as shown in Figure 62

Low forward speed 2900 RPM fixed stick

High forward speed 2900 RPM fixed stick
Grass

Hover in 7-8 in., grass 2700 RPM

Slopes

Flight over 3° slope - medium speed downward

Flight over 5° slope up - low speed - stop,
turn 130° and descend slope 2700 RPM

Plowed field (shown in Figure 63)
Flight perpendicular to furrows - 2700 RPM
Flight parallel to furrows =-.2700 RPM

I1. Tests Performed With the Hula-Hoop

A. Dynamic Stability ( W = 834 1b.)

1.0
1.01

1.02

Hover with fixed stick

Manual pitching moment input from the front
at 3 in., altitude

Manual rolling moment, input from the right
at 5 in. altitude
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1.03

1.04
1.05
2.0

2.01

Manual pitching moment input from the front,
5 in. altitude

Manual heaving disturbance, 5 in. altitude
Manual disturbance in yaw 5 in, altitude
Forward Speed

Stick pulse aft at 5 MPH

Response to Control Inputs

1.0

1.01
1.02
1.03
1.04
1.05

From hover at 5 in. altitude 5900 RPM
Stick step forward

Stick step forward then aft to stop
Stick step right

Stick step left

Full left then full right rudder

Performance

1.0

1.01
1.02
1.03
2.0

2,01
2.02
2,03
2.04
2.05
2.06
3.0

Altitude vs. engine RPM W = 834 1b,.
RPM 5500 h = 2 in,

RPM 5700 h = 3 in.

RPM 5900 h = 5 in.

Altitude vs. weight at 5800 RPM

W =776 1b..

W = 826 1b..

W = 851 1b..
W = 866 1b..
W = 888 1b..
W = 918 1b..
Control stick moments at 5900 RPM h = 5 in.
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3.10

3.11
3.12
3.13
3.14
3.15
3.16
3.20

3.21
3.22
3.23
3.24
3.25
3.26

Longitudinal stick (weight added on front)
7.72 ft. from C.G.

W,= 0 1b.
We=2 1b,.
We=5 1b..
W. = 10 1b..
We= 15 1b..
W, = 20 1b..

Lateral stick (weight added on right side)
7.72 ft, from C.G.

W,= 0 1b.
We= 1 1b.
W,= 2 1b.
W= 3 1b.
W= 5 1b.
W,= 7 1b.
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APPENDIX D

This Appendix contains illustrations, photographs
and graphs of flight test records.
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Brake Horsepower

200

160

120

v
o

40

Gross Weiﬁht: 1680 Pounds

FIGURE 17:

8 12 16 20
ALTITUDE, INCHES

VARIATION OF P-GEM ALTITUDE WITH BRAKE
HORSEPOWER
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ALTITUDE, INCHES

Gross Weight: 1680:' Pounds

20
16
(N
\\

12

8

\\
4
0
0 1 20 30 40 50

FORWARD SPEED, FT./SEC.

FIGURE 18: OPERATING ALTITUDE OF THE P-GEM AS A FUNCTION
OF FORWARD SPEED AT A CONSTANT POWER OF ABOUT
160 HP
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FIGURE 44: EFFECT OF GROSS WEIGHT ON THE HOVERING
ALTITUDE OF THE "HULA HOOP' AT 5800 RPM
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FIGURE 46: THE ROTATIONAL CUSHION FLOW
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b. “INSTALLATION OF THE AIR DUCTS

FICUI 15 YAW COUNTROL INSTALLATION
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SERIES OF 10 DITCHES 8 FEET APART
1 FOOT DEEP AND 30 FEET LONG
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